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Abstract

Under the classical model we estimate model parameters using historical data. The Bayesian
approach nests the classical approach as a special case. The Bayesian framework facilitates sys-
tematic inclusion of ’expert judgements’ via prior distributions . In this paper a PCA model,
of the term structure of interest rates, is extended to use a Bayesian framework. This practical
example demonstrates how a classical model with no adjustment would have consistently over-
estimated UK interest rates during the prolonged low-rate period following the financial crisis
whereas a Bayesian approach that incorporates additional ’information’ doesn’t.

1 Introduction

Bishop [2020]

2 Principal Component Analysis

2.1 The model

The term structure of interest rates may be represented as a vector r in an m dimensional space.
Each dimension i ∈ {1, 2, . . . ,m} corresponds to a interest rate ri at a specific maturity term.

r = (r1, r2, ..., rm)

Principal component analysis linearly transforms the vector r into a new co-ordinate system defined
by principal component vectors v1, v2, v3, ..., vm. Consequently, the term structure may instead be
reinterpreted as a linear combination of principal components:

r = r̄+ c1v1 + c2v2 + · · ·+ cmvm

where:

r̄ is an m dimensional vector of average interest rates

In practice we do not use all m principal components since PCA is a dimensionality reduction
technique. Instead we select k principal components where k ≪ m
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r ≈ r̄+ c1v1 + c2v2 + · · ·+ ckvk

Where:

vj are m dimensional vectors of principal component j ∈ {1, 2, . . . , k}

cj are m are co-ordinates along the principle component axes representing data points under
the transformed system

k is the number of principal components retained.

2.2 Principal Component Extraction

The principal components vj are the eigenvectors of the covariance matrix of multiple term struc-
ture observations.

The observed co-ordinates along the principle component axes cj (i.e. a transformed dataset) are
derived using the original (untransformed) observations and the calculated principle component
eigenvectors.

2.2.1 Calculate Covariance Matrix

Consider N observations of the term structure r we can denote each observation as r(t) where
t ∈ {1, 2, . . . , N}. We calculate the covariance matrix Σ as follows:

Σ = 1
N−1

∑N
t=1(r(t)− r̄)(r(t)− r̄)T

insert formula for calculating r bar when multiple observations

2.2.2 Eigenvalue Decomposition

The eigenvectors of the covariance matrix are found by solving: Σvi = λivi

where λi are the eigenvalues of the covariance matrix.

2.2.3 Project original data onto principle components

The eigenvectors vi facilitate expression of the original dataset r(t) , t ∈ {1, 2, . . . , N} in terms of
the principal components.

For a given observation at time t of the term structure r(t) we deduct the mean vector r̄ to obtain
a dataset centered around zero.

r′ = r(t)− r̄

The observed co-ordinates ci,t on the principle component axes vi are calculated as:
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cj,t = (r(t)− r̄) · vi = r′ · vi

cj,t are also referred to as scalar coefficients (or principal component scores) for principal component
j and observation t.

3 Modelling Changes in the Term Structure

3.1 Term Strucutre Generation vs Evolution

Insurers are more often concerned with modelling the change in a term structure of interest rates,
given an initial starting point, rather than simulating the whole curve from first principles. For
example, under solvency UK legislation, insurers are prescribed a risk free yield curve from which
to model the changes over a 1 year time horizon.

3.2 Measure of Interest Rate Changes

Denote s(t) as the change in the term structure over the time period (t− 1, t). s(t) is a function of
r(t) and r(t-1)

We are presented with a choice of measures when modelling the evolution of interest rates.

Measure Formula for s(t)
Absolute Changes ri(t)− ri(t− 1)

Relative Changes ri(t)
ri(t−1)

Log Changes log ri(t)− log ri(t− 1)

Table 1: Different Measures

where ri(t) is the interest rate for maturity i at time t

Each choice of measure has its advantages and disadvantages. For instance, relative changes are
problematic when rates are close to zero since proportional changes will be very large.

For the purposes of the example that follows we consider log changes. Even though they are less
intuitive, log changes are comparable against different levels of interest rate.

3.3 Adapting the model to measure differences

The principle component model is indifferent as to what the underlying dataset represents. It for-
mulation is therefore inconsequential to whether we are modelling nominal rates levels or differences.

we may want to reference lags and the use of overlapping data in order to increase datapoints

We can respecify our principle component model as:
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s(t) = (s1(t), s2(t), ..., sm(t))

where

si(t) is the difference in interest rates over the period (t− t, t) i.e ri(t)− ri(t− 1)

s̄ is an m dimensional vector of average interest rate differences

s ≈ s̄+ c1v1 + c2v2 + · · ·+ ckvk

Σ = 1
N−1

∑N
t=1(r(t)− r̄)(r(t)− r̄)T

3.3.1 Dataset

Assume we have N observations of the term structure r(t) where t ∈ {1, 2, . . . , N} and that we
wish to model the change in interest rates from now, time N , to time N + 1.

We have an m x N matrix of historical observations ri(t)

We have a m x (N-1) matrix of historical yield differences si(t) = ri(t)− ri(t− 1)

s(N+1) = r(N+1)− r(N)
We again have an m dimensional row vector s = (s1, s2, ..., sm)

4 Related Work

Discussion of related work here.

5 Methodology

Details of your methodology here.

5.1 Determining Change in Yields from Simulated Principal Compo-
nents

6 Determining Priors

Consistently positive forecast errors in the classical model, combined with knowledge of changes in
central bank policies, provides insights suggesting that low interest rates are likely to persist. These
insights can have be incorporated into priors, allowing for a more forward-looking assessment.
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We will add back the mean but perhaps there is a financial theory that suggests the mean should
be zero over time.

7 Results

Presentation of results here.

8 Conclusion

The Bayesian approach nests the classical approach as a special case. Sekerke [9999]
Expert judgements are a necessary part of the modelling process. Incoporating them in a

systematic way using bayesian framework is advantageous because ...

9 Additional investigations

This section will not appear in the final paper. It is just a dumping ground for my personal thoughts:

• produce questionnaire to ask insurers if they use bayesian inference in their modelling

• STAN and BMRS

• a comparison of classical model with ad hoc adjustments against bayesian method with sys-
tematic adjustments.

• does the fact that the use case for insurers, involving a given interest rate curve, mean that
it introdcues some kind of bayesian element anyway.

• terminology concerns

• linear exposures

• empirical risk drivers

References
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Random Notes
These notes are not part of the actual paper but just a dumping ground while work is in progress.

10 Data

Consider a dataset of historical spot rates S(t,m) where the time index t that details the date of
each set of observed spot rates at differing maturities m

S(t,m) where t is the time index and m is the maturity year

11 choice of number of principal components

A central concern in PCA is the number of principal components to retain. Bishop [2020]
explain we will use three as is standard practice and explains x percent using eigenvalues to give

us this percentage.

12 nailing the terminology of empirical co-ordinates

Different terminologies used to refer to cj reflect different perspectives. co-ordinate emphasises

that cj represents a position in the transformed co-ordinate system. (the principal component
space). After transformation, the datapoint is expressed as a linear combination of the eigenvectors.
cj is the co-ordinate along vj Principal Component Score ’score’ is a common term in statistics

to mean value of data point. In this context a score is the value of the value of the data point
along a principal component axis. i.e. how much a given observation loads onto that principal
component. Scalar Coefficient it views the data point as a coefficient in the expansion of the

eigenvector basis.... the term scalar makes sense because we are talking about numerical values
data points. coefficients is confusing but they are indeed coefficients of the eigenvector...

13 principal component basis vectors

another term for principal components, or eigenvectors

14 principal component axis

15 level, slope and curvature vs eigenvector values

link to chatgpt
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16 inner product and outer product

inner products and outer products are fundamental concepts in linear algebra. inner product is aka
dot product. it is the projection of 1 vector onto another

an outer product is different in that it produces a matrix not a scalar

17 normalising dataset

is it necessary to normalise movements i.e. have centered around zero.

18 soundbites

only a few principal components explain most of the variance, we can approximate the data using
a lower-dimensional representation taking a log transformation stabilises variance

perhaps nabsolute changes deal with negatives more easily.
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